Part Number Hot Search : 
H52115 LBN70A09 FPLA544G NJU7771F 13202 M67025E BUV48 M1311
Product Description
Full Text Search
 

To Download MRF173CQ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF173CQ/D
The RF MOSFET Line
RF Power Field Effect Transistor
N-Channel Enhancement Mode MOSFET
Designed for broadband commercial and military applications up to 200 MHz frequency range. The high-power, high-gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands. * Guaranteed Performance at 150 MHz, 28 V: Output Power = 80 W Gain = 11 dB (13 dB Typ) Efficiency = 55% Min. (60% Typ) * Low Thermal Resistance * Ruggedness Tested at Rated Output Power * Nitride Passivated Die for Enhanced Reliability * Low Noise Figure -- 1.5 dB Typ at 2.0 A, 150 MHz * Excellent Thermal Stability; Suited for Class A Operation MAXIMUM RATINGS
Rating Drain-Source Voltage Drain-Gate Voltage Gate-Source Voltage Drain Current -- Continuous Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Operating Temperature Range Symbol VDSS VDGO VGS ID PD Tstg TJ Value 65 65 40 9.0 220 1.26 -65 to +150 200 Unit Vdc Vdc Vdc Adc Watts W/C C C G S D
MRF173CQ
80 W, 28 V, 175 MHz N-CHANNEL BROADBAND RF POWER MOSFET
CASE 316-01, STYLE 2
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RJC Max 0.8 Unit C/W
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain-Source Breakdown Voltage (VDS = 0 V, VGS = 0 V) ID = 50 mA Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0 V) Gate-Source Leakage Current (VGS = 40 V, VDS = 0 V) V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 2.0 1.0 V mA A
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 50 mA) Drain-Source On-Voltage (VDS(on), VGS = 10 V, ID = 3.0 A) Forward Transconductance (VDS = 10 V, ID = 2.0 A) VGS(th) VDS(on) gfs 1.0 -- 1.8 3.0 -- 2.2 6.0 1.4 -- V V mhos (continued) NOTE -- CAUTION -- MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV 0
1
ELECTRICAL CHARACTERISTICS -- continued (TC = 25C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 28 V, VGS = 0 V, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0 V, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0 V, f = 1.0 MHz) Ciss Coss Crss -- -- -- 110 105 10 -- -- -- pF pF pF
FUNCTIONAL CHARACTERISTICS
Noise Figure (VDD = 28 V, f = 150 MHz, IDQ = 50 mA) Common Source Power Gain (VDD = 28 V, Pout = 80 W, f = 150 MHz, IDQ = 50 mA) Drain Efficiency (VDD = 28 V, Pout = 80 W, f = 150 MHz, IDQ = 50 mA) Electrical Ruggedness (VDD = 28 V, Pout = 80 W, f = 150 MHz, IDQ = 50 mA) Load VSWR 30:1 at all phase angles Series Equivalent Input Impedance (VDD = 28 V, Pout = 80 W, f = 150 MHz, IDQ = 50 mA) Series Equivalent Output Impedance (VDD = 28 V, Pout = 80 W, f = 150 MHz, IDQ = 50 mA) NF Gps -- 11 55 1.5 13 60 -- -- -- dB dB %
No Degradation in Output Power
Zin Zout
-- --
1.35-j5.15 2.72-j149
-- --
Ohms Ohms
R2 R1 C8
+ -
C11 C10
RFC2 D.U.T.
RFC1
C12
+ -
VDD = 28 V C13 C14 Vdc
+ -
C9
Z1
RF INPUT C1 C2
C16 L1 C3 L2
R3
L3 C4 C5
L4 C15 C6 C7
RF OUTPUT
C1, C15 -- 470 pF Unelco C2, C3, C5 -- 9-180 pF, Arco 463 C4, C6 -- 15 pF, Unelco C7 -- 5-80 pF, Arco 462 C8, C10, C14, C16 -- 0.1 F C9, C13 -- 50 F, 50 Vdc C11, C12 -- 680 pF, Feed Through L1 -- #16 AWG, 1-1/4 Turns, 0.3 ID L2 -- #16 AWG Hairpin 1 long
L3 -- #14 AWG Hairpin 0.8 long L4 -- #14 AWG Hairpin 1.1 long RFC1 -- Ferroxcube VK200-19/4B RFC2 -- 18 Turns #18 AWG Enameled, 0.3 ID R1 -- 10 k, 10 Turns Bourns R2 -- 1.8 k, 1/4 W R3 -- 10 k, 1/2 W Z1 -- 1N5925A Motorola Zener
Figure 1. 150 MHz Test Circuit
REV 0
2
TYPICAL CHARACTERISTICS
120 f = 100 MHz Pout , OUTPUT POWER (WATTS) 100 80 60 40 20 0 0 1 2 3 4 5 6 7 150 MHz 200 MHz 80 70 Pout , OUTPUT POWER (WATTS) 60 50 40 f = 100 MHz
150 MHz 200 MHz
30 20
VDD = 28 V IDQ = 50 mA
10 0 0 2.0 4.0 6.0 8.0 10
VDD = 13.5 V IDQ = 50 mA 12 14 Pin, INPUT POWER (WATTS)
8
9
10
Pin, INPUT POWER (WATTS)
Figure 2. Output Power versus Input Power
Figure 3. Output Power versus Input Power
140 Pout , OUTPUT POWER (WATTS) 120 100 80 60 40 20 0 10 12 14 16 18 20 22 24 26 28 30 1.0 W IDQ = 50 mA f = 100 MHz Pin = 4.0 W 3.0 W 2.0 W
140 Pout , OUTPUT POWER (WATTS) 120 100 80 60 40 20 0 10 12 14 16 18 20 22 24 26 28 30 2.0 W IDQ = 50 mA f = 150 MHz Pin = 8.0 W 6.0 W 4.0 W
VDD, SUPPLY VOLTAGE (VOLTS)
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 4. Output Power versus Supply Voltage
Figure 5. Output Power versus Supply Voltage
140 Pout , OUTPUT POWER (WATTS) Pin = 14 W 10 W G PS , POWER GAIN (dB) 120 100 80 60 40 20 0 10 12 14 16 18 20 22 24 26 28 30 6.0 W 4.0 W IDQ = 50 mA f = 200 MHz
22 20 18 16 14 12 10 8.0 6.0 4.0 2.0 20 40 60 80 100 120 140 160 f, FREQUENCY (MHz) 180 200 220 Pout = 80 W VDD = 28 V IDQ = 50 mA
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 6. Output Power versus Supply Voltage
Figure 7. Power Gain versus Frequency
REV 0
3
80 Pout , OUTPUT POWER (WATTS) 70 60 50 40 30 20 10 0 -14 -12 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 VGS, GATE-SOURCE VOLTAGE (VOLTS) 4.0 6.0 f = 150 MHz Pin = CONSTANT VDS = 28 V IDQ = 50 mA VGS(th) = 3.0 V
6.0 5.0 4.0 3.0 2.0 1.0 0 0 1.0 2.0 3.0 4.0 5.0 VGS, GATE-SOURCE VOLTAGE (VOLTS) 6.0 VDS = 10 V VGS(th) = 3.0 V
Figure 8. Output Power versus Gate Voltage
ID , DRAIN CURRENT (AMPS)
Figure 9. Drain Current versus Gate Voltage
VGS , GATE SOURCE VOLTAGE (NORMALIZED)
1.2 VDS = 28 V 1.1 1.0 0.9 ID = 3.0 A 1.0 A 500 mA 50 mA
420 360 C oss, CAPACITANCE (pF) 300 240 180 120 60 0 25 50 75 100 125 150 175 0 0 4 Crss
Ciss
140 120 100 80 60 Crss , C iss, CAPACITANCE (pF)
VGS = 0 V FREQ = 1 MHz
Coss
40 20 28 0
0.8 0.7 -25
TC, CASE TEMPERATURE (C)
8 12 16 20 24 VDS, DRAIN-SOURCE VOLTAGE (VOLTS)
Figure 10. Gate-Source Voltage versus Case Temperature
Figure 11. Capacitance versus Drain Voltage
10 ID , DRAIN CURRENT (AMPS) 5.0 2.0 1.0 0.5 0.2 0.1 1.0 2.0 4.0 6.0 10 20 40 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 60 100 TC = 25C
Figure 12. DC Safe Operating Area
REV 0
4
DESIGN CONSIDERATIONS The MRF173CQ is a RF MOSFET power N-channel enhancement mode field-effect transistor (FET) designed for VHF power amplifier applications. M/A-COM's RF MOSFETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove power FETs. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF173CQ is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many
applications. The MRF173CQ was characterized at IDQ = 50 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF173CQ may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (see Figure 8.) AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF173CQ. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOSFETs helps ease the task of broadband network design. Both small-signal scattering parameters and large-signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.
REV 0
5
PACKAGE DIMENSIONS
D R
F
4 3 NOTES: 1. FLANGE IS ISOLATED IN ALL STYLES. DIM A B C D E F H J K L N Q R U INCHES MIN MAX 24.38 25.14 12.45 12.95 5.97 7.62 5.33 5.58 2.16 3.04 5.08 5.33 18.29 18.54 0.10 0.15 10.29 11.17 3.81 4.06 3.81 4.31 2.92 3.30 3.05 3.30 11.94 12.57 MILLIMETERS MIN MAX 0.960 0.990 0.490 0.510 0.235 0.300 0.210 0.220 0.085 0.120 0.200 0.210 0.720 0.730 0.004 0.006 0.405 0.440 0.150 0.160 0.150 0.170 0.115 0.130 0.120 0.130 0.470 0.495
K
1
Q
2
L B J E N H A U C
STYLE 2: PIN 1. 2. 3. 4.
BASE COLLECTOR BASE EMITTER
CASE 316-01 ISSUE D
Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 0
6


▲Up To Search▲   

 
Price & Availability of MRF173CQ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X